Лекция 7

Проекционный метод обращения преобразования фурье с использованием функций Эрмита

ANANANANANA

Проекционный метод обращения преобразования фурье с использованием функций Эрмита

Outline:

- Projection Method (Hermite series approach)
- Applications
 - 1. Image filtering and deblocking by projection filtering
 - 2. Image matching

- 3. Texture matching
- 4. Low-level methods for audio
- 5. Hermite foveation

Hermite transform

The proposed methods is based on the features of Hermite functions. An expansion of signal information into a series of these functions enables one to perform information analysis of the signal and its Fourier transform at the same time.

A)

B) They derivate a full orthonormal in $L_2(-\infty,\infty)$ system of functions.

The Hermite functions are defined as:

$$\psi_n(x) = \frac{(-1)^n e^{x^2/2}}{\sqrt{2^n n!} \sqrt{\pi}} \cdot \frac{d^n (e^{-x^2})}{dx^n}$$

Original image

2D decoded image by 45 Hermite functions at the first pass and 30 Hermite functions at the second pass

Difference image (+50% intensity)

Original image

2D decoded image by 90 Hermite functions at the first pass and 60 Hermite functions at the second pass

Difference image (+50% intensity)

Image filtering and deblocking by projection filtering

Original lossy JPEG image

Enhanced image

Difference image (Subtracted high frequency information)

Zoomed in:

Original image

Enhanced image

привътъ съ дороги.

Scanned image

ET DATE STOR

Enhanced image

108

Zoomed in:

Enhanced image

Scanned image

Image matching

Information parameterization for image database retrieval

Image normalizing Graphical information parameterization Parameterized image retrieval

Information parameterization for image database retrieval

Normalized image

HF component

LF component

Recovered image with the recovered image plane

Image normalizing

Graphical information parameterization Parameterized image retrieval

<text><text><text><text>

ma

Results of recognizing "engraving_s1_i2.bmp": 0.005825 - engraving1_00_00 (category - Paintings) 0.011565 - engraving1_00_01 (category - Paintings) 0.022878 - engraving1_00_10 (category - Paintings) 0.088463 - engraving1_00_11 (category - Paintings) 0.088774 - engraving1_00_03 (category - Paintings) 0.091817 - engraving1_00_12 (category - Paintings) 0.094882 - engraving1_00_12 (category - Paintings) 0.094891 - engraving1_02_03 (category - Paintings) 0.107175 - engraving1_02_03 (category - Paintings) 0.107417 - engraving1_02_02 (category - Paintings) 0.107417 - engraving1_02_03 (category - Paintings) 0.107978 - engraving1_01_03 (category - Paintings) – 768 images (4.12Gb)

- -1600x1200x24bit (5.5Mb)
- -512x512x24bit (0.75Mb)

)n

- -32x32x3
- -<0.14%

×

-4 sec. (for K7-750)

	0.107980 - engraving1_02_01 0.108452 - engraving1_01_02 0.100313 - engraving1_01_03	I (categorý - Paintings) 2 (category - Paintings) 2 (category - Paintings) 0 K		
ige normali	izing aphical inf	ormation	parame	terizatio
		Parameter	rized im	ane refi

Texture matching

A method of obtaining the texture feature vectors

Input function

Fourier coefficients

 $\alpha_i = \int_{-\infty}^{\infty} \Psi_i(x) \cdot f(x) dx$

 $f(x) = \sum_{i=0}^{\infty} \alpha_i \cdot \Psi_i(x)$

1-D to 2-D expansion

 $\psi_{n_1n_2}(x, y) = \psi_{n_1}(x) \cdot \psi_{n_2}(y),$ $\psi_n(x, y) = \psi_n(x) \cdot 1$

A method of obtaining the texture feature vectors

1-D Hermite functions:

1-D to 2-D expanded Hermite functions:

Orientations

Localization problem

Decomposition process is optimal, if localization segments of the input function and filtering functions are equal.

Standard coding

In this approach to get the feature vectors we consider the functions $\psi_n(x,y)$ where n1=0..64, and 6 energy coefficients are calculated as:

> $E_1 = (\alpha_0)^2 + (\alpha_1)^2,$ $E_2 = (\alpha_2)^2 + (\alpha_3)^2 + (\alpha_4)^2,$ $E_3 = (\alpha_5)^2 + (\alpha_6)^2 + (\alpha_7)^2 + (\alpha_8)^2,$

 $E_6 = (\alpha_{33})^2 + (\alpha_{34})^2 + \dots + (\alpha_{63})^2 + (\alpha_{64})^2,$

f(x,y) is the source image.

	A REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.
	A DESCRIPTION OF TAXABLE PARTY.
	the second se
	the second se

Hierarchical coding

 $E_{1} = (\alpha_{0}^{(1)})^{2} + (\alpha_{1}^{(1)})^{2},$ $E_{2} = (\alpha_{0}^{(2)})^{2} + (\alpha_{1}^{(2)})^{2} + (\alpha_{2}^{(2)})^{2} + (\alpha_{3}^{(2)})^{2},$

 $\mathbf{E}_{6} = (\alpha_{0}^{(6)})^{2} + (\alpha_{1}^{(6)})^{2} + \ldots + (\alpha_{62}^{(6)})^{2} + (\alpha_{63}^{(6)})^{2},$

$$\alpha_i^{(1)} = \frac{1}{\sqrt{A_j}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_i(x, y) \cdot f(x, y) dx$$

$$\alpha_{i}^{(j)} = \frac{1}{\sqrt{A_{j}}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_{i}(x, y) \cdot (f(x, y) - \sum_{l=2}^{j} f^{(l-1)}(x, y)) dx, j > 1$$

f(x,y) is the source image.

Hierarchical coding without subtractions

 $E_{1} = (\alpha_{0}^{(1)})^{2} + (\alpha_{1}^{(1)})^{2},$ $E_{2} = (\alpha_{0}^{(2)})^{2} + (\alpha_{1}^{(2)})^{2} + (\alpha_{2}^{(2)})^{2} + (\alpha_{3}^{(2)})^{2},$ \dots $E_{6} = (\alpha_{0}^{(6)})^{2} + (\alpha_{1}^{(6)})^{2} + \dots + (\alpha_{62}^{(6)})^{2} + (\alpha_{63}^{(6)})^{2},$

$$\alpha_i^{(1)} = \frac{1}{\sqrt{A_j}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_i(x, y) \cdot f(x, y) dx$$

 $\alpha_i^{(j)} = \frac{1}{\sqrt{A_i}} \int dy \int \psi_i(x, y) \cdot f(x, y) dx, \quad j > 1$

f(x,y) is the source image.

а	b	Standard coding	Hierarchical coding	Hierarchical coding without subtractions
a1	a2	0.004505	0.005349	0.003739
b1	b2	0.009905	0.008160	0.007742
c1	c2	0.017778	0.011848	0.009946
a3	a4	0.008807	0.006047	0.002422
b3	b4	0.020075	0.010667	0.006275
сЗ	c4	0.128322	0.101591	0.080176
a1	b1	0.488420	0.492238	0.491653
b1	c1	0.315644	0.304597	0.305442

Image segmentation task: Brodatz textures

Image segmentation task

Image segmentation task

3	3	3	14	15	3	3	16	17	18	19	20	20	11
3	3	5	5	8	8	8	10	11	-11	12	12	13	12
6	7	7	8	8	8	8	8	9	5	5	4	4	3
5	4	5	5	5	5	5	5	4	4	4	4	3	1
1	3	3	3	3	3	3	3	1	1	1	1	1	1
1	1	2	2	1	1	1	1	1	1	1	2	2	2
2	2	2	2	2	2	1	1	2	1	2	2	2	2
2	2	2	2	2	2	2	2	2	1	2	2	2	2
2	2	2	2	1	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2

2	2	2	3	2	2	2	2	4	4	4	2	2	3
2	2	2	2	2	2	2	3	3	3	3	3	3	3
2	2	2	2	2	2	2	Ż	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	1	1
1	2	2	2	1	2	2	2	1	1	1	1	1	1
1	1	1	<u>k</u> 1	1	1	1	1	1	1	∧_1 - ″	1		1
1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	16	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	-1	1	1	1	1	1	1	1	1	1	1	1	1

Image segmentation task

Texture parameterization using 2-D Hermite functions

 $\psi_{0,3}(x,y), \psi_{1,2}(x,y), \psi_{2,1}(x,y), \psi_{3,0}(x,y), \psi_{0,7}(x,y), \psi_{2,5}(x,y), \psi_{3,4}(x,y)$

Low-level methods for audio signal processing

Quasiperiod's waveforms

Areas of Hermite transform application:

- Signal filtering
- Speaker indexing
- Speaker recognition using database
- Source separation

Audio sample

Quasiperiod waveform

Hermite histogram

Speaker indexing

Mix detection

Faculty of Computational Mathematics and Cybernetics Moscow State University

Hermite Foveation

A foveated image is a non-uniform resolution image whose resolution is highest at a point (fovea), but falls off away from the fovea.

$$(Tf)(x) = \int_{-\infty}^{\infty} k(x,t) f(t) dt$$
$$k(x,t) = \frac{1}{\alpha |x-\gamma| + \beta} g\left(\frac{t-x}{\alpha |x-\gamma| + \beta}\right)$$

For foveation we used eigenfunctions of the Fourier transform (2D Hermite functions Ψ_{nm}).

$$F(\psi_{nm}) = i^{n+m} \psi_{nm}$$

$$\psi_{nm}(x,y) = \frac{(-1)^{n+m} e^{x^2/2 + y^2/2}}{\sqrt{2^{n+m} n! m! \pi}} \cdot \frac{d^n (e^{-x^2})}{dx^n} \cdot \frac{d^m (e^{-y^2})}{dy^m}$$

The graphs of the 2D Hermite functions look like the following:

The kernel for Hermite foveation was defined as:

$$k(x,t) = \sum_{i=0}^{n} \psi_i \left(A_{\frac{n}{K}-1} \frac{2x - w + 1}{w} \right) \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \sum_{i=0}^{n} \left(\max \left(\min \left(\frac{r}{r - 1} \left(1 - \frac{2r^j |\gamma - x|}{w} \right), 1 \right), 0 \right) \right) \right)$$
$$+ \sum_{i=0}^{K-1} \left(\sum_{i=0}^{n} \psi_i \left(A_{\frac{n}{K}-1} \frac{2x - w + 1}{wr^j} \right) \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{wr^j} \right) \right)$$

K = 4, r = 1.3, n = 512x384

Original image

K = 16, r = 1.2, n = 512x384

K = 4, r = 1.5, n = 512x384

K = 4, r = 1.3, n = 512x384

K = 16, r = 1.2, n = 512x384

K = 4, r = 1.5, n = 512x384

Conclusion

Hermite foveation allows us to compress useful data, to improve performance of coding/decoding and to use advantages of a timefrequency analysis.